A random dispersion Schrödinger equation with time-oscillating nonlinearity
نویسندگان
چکیده
منابع مشابه
Forced nonlinear Schrödinger equation with arbitrary nonlinearity.
We consider the nonlinear Schrödinger equation (NLSE) in 1+1 dimension with scalar-scalar self-interaction g(2)/κ+1(ψ*ψ)(κ+1) in the presence of the external forcing terms of the form re(-i(kx+θ))-δψ. We find new exact solutions for this problem and show that the solitary wave momentum is conserved in a moving frame where v(k)=2k. These new exact solutions reduce to the constant phase solutions...
متن کاملStatistical mechanics of a discrete Schrödinger equation with saturable nonlinearity.
We study the statistical mechanics of the one-dimensional discrete nonlinear Schrödinger (DNLS) equation with saturable nonlinearity. Our study represents an extension of earlier work [Phys. Rev. Lett. 84, 3740 (2000)] regarding the statistical mechanics of the one-dimensional DNLS equation with a cubic nonlinearity. As in this earlier study, we identify the spontaneous creation of localized ex...
متن کاملAnalytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملThe Random Schrödinger Equation: Homogenization in Time-Dependent Potentials
We analyze the solutions of the Schrödinger equation with the low frequency initial data and a time-dependent weakly random potential. We prove a homogenization result for the low frequency component of the wave field. We also show that the dynamics generates a non-trivial energy in the high frequencies, which do not homogenize – the high frequency component of the wave field remains random and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2014
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2014.04.020